G	Question		Answer	М	Guidance
1					
	а	i 1 2	the maximum displacement <u>from equilibrium</u> or <u>rest position</u> number of oscillations/vibrations (at a point) <u>per</u> unit time	B1 B1	allow <i>zero</i> or <i>undisturbed</i> for <i>equilibrium</i> number of <u>wavelengths</u> passing a point or produced by the wave source <u>per</u> unit time allow per second NOT <i>amount</i> for <i>number</i>
		3	how far 'out of step' (out of sync) the oscillations <u>at two points</u> on the wave/string are/AW	B1	alt e.g. the fraction of a cycle between the oscillations at the two points
		ii 1 2	all have same frequency or same amplitude all have different phases/ phase differences	B1 B1	N.B. withhold mark if extra incorrect answers given allow <i>not in phase</i> or <i>all out of phase</i>
	b	i	<i>progressive</i> a wave which transfers energy <i>stationary</i> a wave which <u>traps/stores</u> energy (in pockets) or <i>progressive</i> : transfers shape/information from one place to	B1 B1	accept phase relationship descriptions between different points on wave;
			another <i>stationary</i> where the shape does not move along/which has nodes and antinodes/AW		must be a comparison for same property to score both marks
		ii	the wave <u>reflected</u> (at the fixed end of the wire)	B1	
			interferes/superposes with the incident wave to produce a resultant wave with nodes and antinodes/no energy transfer	B1 B1	
		iii 1	(all points have) same frequency	B1	
			P and Q have same amplitude <u>and</u> (are in) phase	B1	allow same phase difference here
		2	S has larger amplitude than P and Q	B1	allow different to
			S has a phase difference of π /in antiphase to P and Q	B1	or 180° max any 3 out of 4 marking points
		iv 1	15 Hz	B1	
		2	as all points in the fundamental/first harmonic mode move in phase 120 Hz	B1 B1	accept string is $\frac{1}{2} \lambda$ long/between ends
		-	for every 10 cm to be at rest λ = 20 cm (so 4 x frequency of Fig. 4.2)	B1	accept as all points are nodes or f = 8f ₀ or is 8 th harmonic
			Total question 4	17	

C	Question		Answer	М	Guidance	
2						
	а	i	when two (or more) waves meet/superpose/overlap (at a point) there is a change in overall displacement	M1 A1	NOT interact, combine, join, connect, collide, hit, intersect, pass through, etc. allow the resultant displacement equals the sum of	
					the individual displacements	
		ii	constant phase difference/relationship (between the waves)	B1	allow fixed not same	
	b		$\lambda = c/f = 3.0 \times 10^8 / 1.0 \times 10^{10}$	M1		
			$\lambda = 3.0 \text{ x } 10^{-2} \text{ so aerial length} = 1.5 \text{ x } 10^{-2} \text{ (m)}$	A1	accept 1.5 c(m)	
	С	i1	the path difference between the signals (from the two	B1	give 1 mark out of 2 for maxima and minima occur	
			transmitters) changes (along OP)		(because of interference)	
			causing the detected signal to vary between maximum and	B1		
			minimum values/AW			
			or when signals (at the point on OP) are in phase there is a			
			maximum			
			when (π) out of phase there is a minimum	01		
		2	$x = \lambda D/a = 3.0 \times 10^{-2} \times 4.0/0.20 (= 0.60)$	C1	ecf (b) 20 times answer to (b)	
			so distance = $x/2 = 0.30$ (m)	A1	allow 1 SF answer here	
		ii	amplitude of signal decreases (inversely) with distance	B1	allow intensity; no mark if any suspicion of	
			because energy emitted by the transmitters spreads out (so less	D4	decrease being caused by interference effect	
			is collected by the receiver the further away it is)	B1	accept any statement which conveys the idea of an arrestly a grant d^2	
		iii	when $A O = D O = 1/2$ a minimum appure $A M = \pi$ phase difference	B1	energy spreading correctly,e.g. I α 1/d ²	
		111	when AO – BO = $\lambda/2$ a minimum occurs/AW or phase difference	Ы	idea that movement of $\lambda/2$ will change maximum to minimum or vice versa	
			of π (180°) between detected signals from A and B so distance = $\lambda/2$ = 1.5 x 10 ⁻² (m)	B1	ecf (b) same answer as (b); accept 1.5 c(m)	
	d		intensity increases by factor of 4	B1		
	u	1	as intensity α (amplitude) ²	B1		
		ii	intensity falls to zero	B1		
		"	(emitted) signal is (vertically) <u>polarised</u>	B1		
			receiver in position only to detect horizontally polarised signal	B1	allow transmitter and detector act like 'crossed	
				וט	polarisers' or quoting Malus' law correctly	
			Total question 5	18		
			וטנמו קעבטוטון ט	10		

Q	Question		Answer	Marks	Guidance
3	а		$\frac{\text{constant}}{\text{or always}} \text{ at } \pi \text{ radians/180}^{\circ}$ or because they are generated by the same source/AW	B1	allow fixed NOT same
	b		(for a minimum) the two oscillations/amplitudes add in antiphase/ are π (rad) out of phase/completely out of phase there is a resultant amplitude (of 2.0 μ m) so a sound will still be heard	B1 B1	for zero intensity the two oscillations must have equal amplitudes/AW and be in antiphase allow the word waves for oscillations
	С		B π/2 radians/90° C 3π/4 radians/135°	B1 B1	max 1 out of 2 marks if unit omitted
	d	i	f = $10^{3}/0.8 = 1.25$ kHz or T = 0.8×10^{-3} s $\lambda = v/f$ or vT = $340 \times 0.8 \times 10^{-3}$ $\lambda = 0.27$ m	C1 C1 A1	if T value from graph incorrect ecf with max 2/3
		ii	select λ = ax/D D = 0.4 x 4.8/ 0.27 D = 7.1 (m)	C1 C1 A1	ecf (d)(i) expect 7.06 m if using $\lambda = 0.272$ m 3.5 m or 3.6 m scores 2 marks
	e	i	energy per unit time/power per unit area (perpendicular to the direction of energy transfer)	B1	accept per second as a special case
		ii	ratio of amplitudes = 3 intensity is proportional to $(\text{amplitude})^2$ ratio of intensities = 9 so intensity at O = 4.0 x 10 ⁻⁶ x 9 I = 3.6 x 10 ⁻⁵ (W m ⁻²)	C1 C1 A1	or A at P = 2.0 μ m and A at O = 6.0 μ m clearly stated allow I α A ² i.e. symbols only
			Total	15	